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A novel approach with respect to single point imaging (SPI), compressed sensing, is presented here that is
shown to significantly reduce the loss of accuracy of reconstructed images from under-sampled acquisi-
tion data. SPI complements compressed sensing extremely well as it allows unconstrained selection of
sampling trajectories. Dynamic processes featuring short T�2 NMR signal can thus be more rapidly imaged,
in our case the absorption of moisture by a cereal-based wafer material, with minimal loss of image quan-
tification. The absolute moisture content distribution is recovered via a series of images acquired with
variable phase encoding times allowing extrapolation to time zero for each image pixel and the effective
removal of T�2 contrast.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Single point imaging was originally proposed as a ‘solid state’
imaging modality [1,2]. As a pure phase-encoding imaging tech-
nique, SPI is relatively immune to artefacts due to chemical shift,
magnetic susceptibility variations and inhomogeneities in the B0

field [3,4] and has thus been extensively used to image samples
with very short transverse relaxation time (T�2), of the order of
100 ls [5]. Typically these materials also have short spin–spin
relaxation times (T2) and thus frequency-encoding imaging tech-
niques are unsuitable due to the minimum limits on the time for
echo formation.

The difficulty of slice selection in SPI has confined its use pre-
dominantly to one or three dimensional imaging. Since only one
point in k-space (the acquired data which is subsequently Fourier
transformed to produce an image) is typically sampled after each
r.f. signal excitation, total acquisition times are long and in some
cases prohibitive for the time resolution needed for certain appli-
cations. Several attempts have been made in the past in order to
speed up acquisition, the most prominent being SPRITE, as devel-
oped by Balcom and co-workers [6]; this enables significantly fas-
ter acquisition as the phase encoding magnetic field gradients are
ramped up in discrete steps as opposed to being switched on and
off between each k-space point acquisition.
ll rights reserved.

: +44 1223 334796.
s).
Conventionally such SPI approaches have been performed by
sampling k-space in a linear raster starting at the extremities of
k-space. Centric scans that result in improved sensitivity, as well
as removal of T1 contrast, have however almost completely re-
placed this original sampling trajectory. Since a better signal to
noise ratio (SNR) is achieved per scan, fewer repeat scans are
needed in total to achieve a required SNR threshold. Centric scans
with different geometrical functions such as spirals and square spi-
rals [7,8] have appeared in the literature. As we have shown in a
previous study [9], prior knowledge of the sample shape can en-
able the design of near optimum sampling trajectories, where the
SNR is maximised by sampling k-space points with the highest ex-
pected value convolved with the largest excited magnetization.
Note that SPI, as a pure phase-encoding imaging pulse sequence,
has the desirable feature of placing no constraints on the sampling
trajectory.

Since imaging speed is important in MRI applications, many re-
searches have focused on acquiring only a portion of k-space with-
out significantly degrading the image quality. Traditionally in
centric scans which employ spiral acquisitions, the extremities of
k-space are under-sampled and the values are replaced by zeros
before reconstructing the image with the use of the Fourier trans-
form. When all k-space points as dictated by the desired field of
view (FOV) and spatial resolution are not sampled, the Nyquist
sampling theorem is theoretically violated. In this case the recon-
structed images are expected to show artefacts and diminished
accuracy if reconstructed by a linear transform (such as the Fourier
transform). Compressed sensing (CS) has shown the ability to
reconstruct images which are significantly under-sampled
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[10,11] with minimal loss of quantification. This image reconstruc-
tion method takes advantage of the fact that certain transforma-
tions of MR images such as wavelet or spatial differences are
typically very sparse. Sparsity in this transform domain allows
good reconstruction from an under-sampled set of measurements
in k-space. Lustig et al. [11], studied the exploitation of sparsity
of MR (conventional frequency-phase encoded) images in a trans-
form domain and proposed a non-linear iterative reconstruction of
the under-sampled images based on l1-optimization which results
in minimal loss of image quality/quantification.

In the work presented here, moisture absorption from humidi-
fied air by a thin cereal-based wafer material is considered. A 2D
and a 3D binary MR image of the wafer sample is shown in
Fig. 1(a) and (b), respectively. Such moisture absorption (and sub-
sequent migration within the wafer foam) occurs during an indus-
trial conditioning process. The conditioning process is required in
order to optimise the expansion properties of the wafer for subse-
quent fabrication steps during confectionery production. Hence
this process has a significant contribution to the final quality of
the product. Temporally resolved MRI of such a system is very
challenging. The wafer is highly porous (typically 80–90 vol%)
while the absorbed moisture ranges from 1 to 20 wt% of the solid
content. This low moisture content occurs as ‘bound’ water with
restricted mobility; the porous nature of the wafer also results in
significant magnetic susceptibility variations. These collectively re-
sult in a short T�2 for the water, typically of the order of 100 ls,
whilst T1 remains relatively long (�1 s). Imaging the system with
conventional MRI frequency-encode methods is not possible,
hence the use of SPI.

To follow the dynamic moisture absorption process by the wa-
fer, the following approach was developed and implemented: SPI
was implemented in 3D with an under-sampled acquisition of
33% of k-space. The sampling trajectory was optimised based on
the expected amplitude of the points in k-space as outlined in
our previous publication [9]. Reconstruction of the images from
this acquired k-space data is achieved via a non-linear iteration
(based on optimizing a convex function involving l1-norms) as pro-
posed by Lustig and co-workers [11]. Each image was also con-
structed from four sub-images acquired with increasing phase
encoding time, thus allowing quantification of the water content
in the image via appropriate signal relaxation analysis. This imag-
ing protocol is repeated a number of times during the moisture
absorption process.
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Fig. 1. (a) 2D and (b) 3D binary MR images of the wafer sheet with dimensions
shown. The co-ordinate system shown is used for all image acquisitions.
2. Method development

2.1. Compressed sensing in MRI

Acquiring all the k-space points or Fourier coefficients of a MR
image is time consuming. Under-sampled k-space acquisition is
the method of choice when neither the spatial resolution nor the
number of averages can be compromised for a desired SNR. From
the Nyquist sampling theorem, we expect that when k-space is
strongly under-sampled, linear recovery methods will lead to lossy
recovery and exhibit artefacts. It is important to note, however,
that not all of the Fourier coefficients are equally important for
the reconstruction of the image.

Recently compressed sensing [11,12] has attracted interest in
terms of MR imaging. This sampling method takes advantage of
the sparsity of MR images and allows good reconstructions from
significantly under-sampled k-space. A signal is described as
sparse if it contains only a small number of non-zero values, or if
these values decay very fast. We consider a transform domain
sparsity, where the signal is not sparse but it can be manipulated
to be in some transform domain. In the current context we make
use of the acquired signal in the k-space domain, this is trans-
formed into the image domain and we exploit sparsity in a trans-
form domain. Note that the image domain can be used as the
transform domain if it presents sufficient sparsity. Lustig et al.
[11,12], studied the exploitation of sparsity of MR images; for
example they considered angiograms which have sparsity in the
image domain. Many other types of ‘natural’ images (e.g., natural
scenes, astronomical images) can exhibit sparsity in terms of their
Fourier or wavelet coefficients, or in terms of discrete gradients;
hence in their transform domain. The idea of taking advantage of
sparsity in order to under-sample a signal is motivated by the suc-
cess of image compression techniques. ‘Natural’ images and MR
images can thus be compressed significantly with minimal loss
of information. Several transforms can be used in order to trans-
form an image to a sparse domain – e.g., the discrete cosine trans-
form (DCT) as well as the wavelet transform are the basis for
compression tools JPEG and JPEG-2000 [13].

Since MR images are compressible, compressed sensing the-
ory [10,14] suggests that taking fewer acquisition samples, com-
bined with prior knowledge that the image is sparse in the
transform domain, may be sufficient for an accurate image
reconstruction. This is achieved using a non-linear reconstruction
method based on optimizing a convex function involving l1-
norms, related to the basis pursuit method [10]. In their work
Lustig et al. [11] developed a framework for using CS in MRI,
which has proved to be able to accurately reconstruct MR
images from a small subset of k-space rather than the entire
k-space grid.
2.2. Quantitative single point imaging with optimised sampling
trajectory

A comprehensive study of a near optimum sampling scheme
has been presented in previous work [9], where the sampling tra-
jectory is dictated and ranked by the expected magnitude of the
sampled k-space points which we predict based on available prior
knowledge of the sample shape. k-Space points are sorted from
maximum to minimum expected modulus signal intensity and di-
vided into interleafs consistent with the centric scan sampling
practise [8,15]. The principle used here is that k-space points with
the highest expected signal intensity are acquired with the highest
value of magnetization. A time interval of 5 � T1 is allowed be-
tween each interleaf to allow the magnetization to fully recover.
As has been demonstrated in our previous study [9] a significant
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Fig. 2. (a) Typical 2D image of a wafer sample (b) k-space modulus map (c) our
sampling trajectory employed to acquire 20% of the highest intensity k-space
points.
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improvement in the SNR and image quality can be achieved by fol-
lowing this sampling scheme.

The sampling strategy is based on the fact that SPI is a transient
magnetization imaging method. This means that the magnetiza-
tion will reduce from an initial value of M0 to an equilibrium value
after a certain number of pulse-acquire repetitions [16]. Without
any magnetization preparation the magnetization available for
imaging after the nth excitation pulse-acquire repetition, Mn, is:

Mn ¼ M0ð1�wÞCnEn þM0w ð1Þ

where E ¼ expð�TR=T1Þ, C ¼ cosðaÞ and w ¼ 1�E
1�CE. TR is the time be-

tween two successive excitation pulses and a is the r.f. pulse tip an-
gle. In conventional SPI [5] where k-space is sampled in a rectilinear
trajectory, magnetization is saturated when at the extremities of k-
space and the remaining k-space points are sampled with the same
magnetization. This results in a comparatively poor SNR, which is
generally determined by the centre of k-space, hence the preference
for centric sampling trajectories which commence at the centre of
k-space. An additional advantage is that in a centric scan there is
no T1 weighting of the origin of k-space and hence total image
intensity is directly proportional to the concentration of the sig-
nal-bearing species [4,8,15,17].

The signal intensity, S(r) at any point, r, in a SPI image will be
given (ignoring T1 relaxation effects) by [5]:

SðrÞ / qðrÞ exp � tp

T2
�ðrÞ

� �
sinðaÞ ð2Þ

q(r) is the local 1H density (1H NMR is used in this paper exclu-
sively) and tp is the phase encoding time. In cases where tp is much
shorter than T�2, S(r) will be relatively unaffected by signal relaxa-
tion; however, if tp is comparable or longer than T�2, the signal inten-
sity is attenuated by relaxation effects. Acquisition of S(r) at various
values of tp, however, allows us to calculate T�2ðrÞ using Eq. (2) and
therefore produce a comparatively quantitative image of q(r).

With the above sampling method (as presented in [9]), once the
k-space points have been ranked then a subset of them with the
highest intensity can be acquired in a sparse k-space sampling
scheme. In order for this method to be used for compressed sens-
ing, it is required that under-sampling causes incoherent artefacts,
or more formally the sampling operator must not be easily (spar-
sely) represented in the transform domain [14]. It has been shown
[18] that when a good knowledge of the signal exists, then the
sampling of the signal should aim to acquire the coefficients with
the highest expected intensity for optimal results in the CS frame-
work. Knowledge of the wafer shape provides such prior knowl-
edge. Fig. 2(a) shows a simulated 2D image of a wafer sample,
whilst in Fig. 2(b) the magnitude of its corresponding k-space is
shown. The resultant selected k-space points (20% of the highest
expected intensity) are shown as a binary image in Fig. 2(c). Simu-
lations using the sampling trajectory or pattern in Fig. 2(c) reveal
no obvious coherent artefacts which indicate that this sampling
trajectory is sufficiently incoherent.

Compressed sensing and SPI constitute a powerful combination
as the use of only phase encoding means that all imaging dimen-
sions can be under-sampled. By comparison conventional 2D fre-
quency-phase-encoding imaging, as used by Lustig et al. [11], can
only be usefully under-sampled in the phase dimension. In addi-
tion with respect to SPI, there are no constraints on the k-space
sampling trajectory.

2.3. Sparsifying transform and image reconstruction

The sparsifying transform that is used in our case study is spa-
tial discrete gradients (i.e., it computes differences of neighbouring
pixels). We compute both the horizontal and the vertical gradients.
Such a linear transform increases the dimension of the transform
space, i.e., the number of coefficients roughly doubles. However,
away from the boundaries of the object in the image these pair-
wise differences will be small or close to zero. Only right on the
boundaries will the coefficients be significant. Thus spatial finite
differences is appropriate for our piecewise smooth images and
only a small percentage of the transform coefficients is sufficient
for an accurate, and in our case, sufficiently quantitative recon-
struction. To confirm this, we considered typical 3D images of
the wafer; both a dry and a 15 wt% moisture sample. Fig. 3 shows
the descending rank order of the coefficients in the Finite Differ-
ence transform domain. It is clear that the energy (signal intensity)
of these coefficients is predominately contained in a small subset
and thus that finite differences sparisfy this particular system well.
The distribution is only slightly broader for the wet sample, indi-
cating that the finite difference approach is fine for all the scenar-
ios we considered. It may in future be possible to have an even
better sparsifying transform by designing one directly for the
images of interest [19]. This will potentially reduce the number
of required k-space measurements further.

Typically in SPI, k-space is sampled one point per acquisition
using an appropriate combination of phase-encoding gradients.
To improve the efficiency of single point imaging techniques, Bal-
com and co-workers have proposed the acquisition of multiple
points of the FID [20–22], which can be co-added to increase the
SNR. These points, at increasing temporal locations along the FID,
however, correspond to increasing k-space co-ordinates and effec-
tively a shrinking field of view (FOV). Rescaling to the same FOV is
achieved via use of the chirp z-transform [20]. When the difference
in phase encode time between the successive images is kept to a
minimum (as dictated by hardware restrictions), then the FOV
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change between the successive images is minimal and the images
retain all the geometrical characteristics and can hence be sparsi-
fied by the same transform.

The image reconstruction method that we use in our study is
based on solving a convex optimization problem involving l1-
norms, a variant of basis pursuit [10,11]. If an image that we want
to reconstruct is stacked as a vector m, W is the operator that trans-
forms from pixel representation to a sparse representation, F is the
under-sampled Fourier transform to k-space and y are the k-space
measurements. The reconstruction is then obtained by solving the
following constrained optimization problem:

minjjWmjj1
s � tjjFm� yjj2 < e

ð3Þ

where e is a threshold that can be set to the expected noise level.
The l1-norm acts as a proxy for sparsity – i.e., minimising the above
objective produces an image which has the sparsest representation
in the transform domain while remaining consistent with acquired
measurements. The objective function is minimised using projected
conjugate gradients following the approach of Lustig et al. [11].
Since the objective is convex, the algorithm finds the global mini-
mum in the function. The reconstruction involving the l1-norm is
known to be a biased estimator for some systems, with the bias
becoming more significant at lower SNR [23]. This bias appears in
the sparse domain, so it could affect the reconstructed images in
complex ways. A debiasing scheme such as the one in [23] could
be used. Here we consider the bias and error of the reconstruction
using appropriate simulations. The image of the wafer in Fig. 2(a)
was reconstructed using our methodology applied to 20% of the
highest intensity k-space coefficients. This was done with no mea-
surement noise added (SNR =1) and with the addition of Gaussian
measurement noise to both the real and imaginary components
(SNR = 5, note this ratio corresponds to the lowest SNR of the vari-
ous acquired images presented later). The % error between the
reconstructed images and the original images was calculated for
each pixel, the corresponding data is presented as pixel histograms
of % error in Fig. 4. In both cases the error is centred around 0 and
the bias towards a negative error is relatively small. In the case of no
measurement noise (SNR =1) the mean of the error is only �1.1%,
which is very small. In the case of SNR = 5, the distribution of error
is larger, consistent with the poorer SNR, but the mean of the error
is still only �2.3%, which again is relatively small.

2.4. Experimental setup

All experiments were conducted using a Bruker AV400 spec-
trometer equipped with a micro-imaging r.f. coil of 25 mm inter-
nal diameter. Food wafer samples, binary gated 2D cross-sectional
and 3D MR images of which are shown in Fig. 1, were placed in a
17 mm internal diameter NMR tube featuring a glass sample
holder and connected to a humidified air source (18.6 ± 0.5 �C;
relative humidity >95%) at a flow rate of 250 ml min�1. The 3D
SPI pulse sequence used is schematically shown in Fig. 5 (single
interleaf shown). Each image consisted of four successive sub-
images, each acquired with a different range of phase encoding
time (and hence a reduced applied gradient strength to ensure
a consistent FOV), in order to quantify the water content. As
shown in Fig. 5, for each k-space ‘point’, five points of the FID
were acquired separated by a dwell time of 1 ls. For the first
sub-image these corresponded to phase encoding times of 76,
77, 78, 79 and 80 ls. The second sub-image used phase encode
times from 96 to 100 ls, the third from 116 to 120 ls and the
fourth from 136 to 140 ls, respectively. Exceeding this 5 ls range
resulted in image artefacts in the co-added images reconstructed
with the same FOV via the chirp z-transform, this effect was
made more acute by the presence of sharp edges in our sample.
These images were first reconstructed individually through the
optimization scheme that was described earlier and then co-
added to improve the SNR.

All images were acquired using a tip angle of 3� corresponding
to a pulse duration of 3 ls, and a repetition time (TR) of 2 ms. The
images were acquired over a field of view of 2 � 1 � 5 cm3 and
consisted of 64 � 32 � 8 pixels. For these under-sampled (33% ac-
quired) images, followed by compressed sensing reconstruction,
5400 pulse-acquire events were required (split into 8 interleafs
of 675 points), which with four signal averages and the acquisi-
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tion of four sub-images resulted in a total acquisition time of
13 min.
3. Results and discussion

3.1. Improvement due to compressed sensing reconstruction

Using a typical 3D image of the wafer material, full images were
constructed as a function of the percentage of expected highest
intensity k-space or Fourier coefficients retained, using the sam-
pling trajectory described above. In each case the average (absolute
magnitude) pixel error was calculated with reference to the recon-
structed image with full k-space sampling. The result is shown in
Fig. 6. It is evident that by acquiring only 33% of the k-space points
followed by a compressed sensing reconstruction, the average er-
ror is kept below 3%. For this calculation, only pixels from within
the object of interest are considered. This translates to a possible
66% reduction in total acquisition time. For comparison in Fig. 6,
the average pixel error as a function of k-space sampled is shown
for the case of zero-filling un-sampled data followed by conven-
tional Fourier transform. Fig. 6 clearly demonstrated the superior
performance of compressed sensing.
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3.2. Quantification of moisture content

NMR experiments on samples such as crystals and glasses often
show a beat or oscillation in their free induction decay (FID) [24].
This beat has been observed in dry food systems as well [25–28].
The beat arises from residual order within the sample resulting
from regular spacing between neighbour protons that give rise to
dipolar spectral line shape, also referred as the ‘Pake pattern’
[29,30]. In such materials the observed FID is a superposition of
the FIDs of the mobile and the immobile protons [24]. Signal aris-
ing from the liquid decays in a simple exponential fashion. Decay
of the ‘solid’ signal is described by a composite of a Sinc function
and Gaussian broadening. The signal intensity of the FID, Sobs(t),
can therefore be expressed as:

SobsðtÞ ¼ AS exp �1
2

a2t2
� �

sin bt
bt
þ AL exp � t

T�2L

� �
ð4Þ

AS is the population of immobile 1H, a is the inverse of the stan-
dard deviation of the Gaussian function, b is the angular frequency
of the Sinc function and AL is the population of the mobile 1H. The
second moment M2 of the acquired line shape is a measure of the
strength of the dipolar interactions [24,25] and is given by:

M2 ¼ a2 þ 1
3

b2 ð5Þ

Typical FIDs of the wafer at different moisture levels are shown
in Fig. 7 together with the fit of Eq. (4). For this experimental series
the wafer samples where initially dried to a moisture content of
2 wt%, this remaining water is bound in the starch matrix. Humid-
ified air was then blown over the sample ex situ and an FID ac-
quired periodically. The total moisture uptake was determined
gravimetrically immediately prior to each FID acquisition. At the
end of the experiment the final moisture content was also deter-
mined using a Sartorius MA-45 moisture analyser. The quality of
fit in Fig. 7 is excellent for comparatively low moisture contents
and then deteriorates slightly as moisture content increases. As ob-
served by others [24] for similar samples, this probably originates
from a multi-exponential behaviour of the mobile proton signal or
more likely spatial variations in moisture content (which will be
significantly reduced when imaging). Nevertheless, with reference
to Fig. 7, a single exponential provides a reasonable fit for moisture
contents of 15 wt% or less; this covers the range of industrial
interest.

Fig. 8(a) and (b) show the evolution in T2L
*, AL and AS, respec-

tively, with total moisture content. With reference to Fig. 8(b), an
approximately linear relationship is observed between moisture
content and AL, which with reference to Eq. (2) is required for
quantitative moisture mapping. AS remains relatively constant as
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expected, the slight decrease probably results from some increased
mobility of the starch structure with increased moisture content.
This is consistent with a slight decrease in the second moment of
the line shape (M2) as shown in Fig. 8(c), calculated using the fit
parameters and Eq. (5). There is an offset at zero moisture content
suggesting a small inherent contribution to the mobile proton sig-
nal from other constituents of the wafer such as mobile fats and
lipids. The observed increase in T�2L with moisture content in
Fig. 8(a) is as expected and indicates that the water is becoming
increasingly mobile as its content is increased. In all imaging
experiments conducted, the minimum phase encoding time was
75 ls. Analysis of the FIDs using Eq. (4) indicates the signal contri-
bution from the immobile 1H to the acquired image intensity,
Sobs(t), when t = 75 ls is consistently less than 0.1% and hence
can be ignored. Thus for our in situ wafer humidification experi-
ments, we are able to quantify our bulk moisture content as a func-
tion of time via the periodic acquisition of FIDs and using Fig. 8(b).
The resultant evolution of total moisture content with time is
shown in Fig. 9. The full analysis of the FID was performed in order
to guarantee that the signal from the solids components is not sig-
nificant at the phase encode times used here. If a full analysis of the
solid and liquid composition of the individual pixels is required
then images at shorter phase encode times need to be acquired
[31]. In our case, due to gradient strength restrictions, we are not
able to acquire at such short phase encode times.
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Fig. 11. Sample attenuation of the signal in a 1D profile extracted from an x–y
image for each of the four sub-images at increasing phase encode time.
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3.3. Expected propagation of errors

In order to recover the quantitative moisture content maps, as
described previously, the T�2 relaxation effects need to be reversed
in each pixel and the signal hence extrapolated to the origin of time
when it is proportional to the moisture content. This back extrap-
olation is achieved by fitting a single exponential decay to the data
for each pixel. Potential sources of error include measurement
noise, the effects of under-sampling k-space and the reconstruc-
tion optimization routine used. As shown in Fig. 4, the effects of
under-sampling and reconstruction is an insignificantly small bias.
In order to consider the propagation of error from these original
sources, the following simulation was performed: Fig. 2(a) was as-
signed to be the moisture map at time zero (i.e., a map of AL). Typ-
ical T�2 values were assigned to each pixel and the images at
different phase encode times (as were used in all image acquisi-
tions) were produced with Gaussian noise added to both the real
and imaginary components in the image domain. The resultant ser-
ies of images are presented in Fig. 10(a). The SNR was 5:1 (the low-
est encountered experimentally) in the lowest intensity image.
Each image was reconstructed using 33% of the highest expected
intensity k-space coefficients. A single exponential was fitted to
each pixel to recover a map of AL. A histogram of the resultant % er-
ror in AL is presented in Fig. 10(b). This is clearly centred on zero
with minimal bias and >93% of the pixels presenting an error less
than 10%.
3.4. Three dimensional imaging

3D SPI images of the wafer sample were acquired periodically
during the humidification process. Using the appropriately trun-
cated form of Eq. (4) applied to the four sub-images and the data
in Fig. 8(b), these were converted into quantitative moisture distri-
bution images. As mentioned previously the total acquisition time
of each quantitative 3D image was 13 min; with reference to Fig. 9
this was broadly consistent with the moisture absorption kinetics
displayed by the wafer. A fully sampled equivalent SPI image
would require a total acquisition time of approximately 39 min.
With reference to Fig. 7, to produce an identical average pixel error
when employing zero-filling and conventional Fourier Transform
3% (w.t)

9% (w.t)

12% (w.t)

 

Fig. 12. T�2 maps of a central slice of the 3D images, obtained after fitting Eq. (4) to each p
described in the text. These are shown as a function of bulk moisture content.
would require acquisition of 75% of the k-space points and a total
acquisition time of approximately 30 min.

Fig. 11 shows extracted signal profiles from the four sub-images
across the thinnest dimension of the wafer; the decrease in signal
with phase encoding time due to T�2 relaxation is evident. From the
series of four sub-images acquired at different phase encoding
intervals, T�2 and AL maps were generated using Eq. (4). We are
effectively extrapolating back to a phase encoding time of 0 ms
when determining the AL maps. Fig. 12 shows the T�2 maps of a cen-
tral slice of the 3D image as a function of bulk moisture content.
Initially, increases in T�2 occur preferentially near the surface of
the wafer, with further moisture absorption resulting in an in-
crease in T�2 towards the centre of the sample. Extrapolated and
hence quantitative moisture maps are shown for the same slice
in Fig. 13(a). Initially in the driest image, local ‘spikes’ in moisture
content are observed. In subsequent images the moisture absorp-
tion starts from the surface pixels, as was qualitatively seen in
the T�2 maps, whilst for the last two acquisitions the moisture con-
tent appears relatively homogeneous across the sample. Fig. 13(b)
shows the extracted 1D profiles of moisture content from the slices
presented in Fig. 13(a).
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Fig. 13. (a) Quantitative moisture distribution maps (taken from the 3D images), obtained after fitting Eq. (4) to each pixel using the four sub-images reconstructed using the
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4. Conclusion

We have presented several improvements to the SPI technique
aimed primarily at increasing its temporal resolution. This is con-
ducted using 3D imaging of the conditioning of a wafer system
in a humidified environment as a case study. The most significant
improvement is the use of compressed sensing to effect image
reconstruction; which improves accuracy of the images signifi-
cantly when under-sampling k-space; a mean pixel error of only
3% is produced when sampling only 33% of k-space in each image.
SNR is improved via multiple point acquisition and subsequent
FOV correction using a chirp z-transform, whilst quantitative mois-
ture distribution is recovered via appropriate analysis of a series of
sub-images acquired at different phase encode time intervals. The
back extrapolation results in an unbiased quantitative recovery of
the water signal.
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